Artifact 66376a6ccba334b0d57fdac5b279805cf1c4fc2dd8a290376836f2ab5fd163ad:
- File
src/runtime/class.m
— part of check-in
[ef6d69931e]
at
2019-02-07 00:46:41
on branch trunk
— Make style consistent between ObjFW and ObjFW_RT
ObjFW_RT used to be a separate project that followed the BSD style, as
it was written in pure C, while ObjFW's style is based on the BSD style
with changes to make it a better fit for Objective-C. This commit
changes ObjFW_RT to use the same style as ObjFW. (user: js, size: 20544) [annotate] [blame] [check-ins using]
/* * Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, * 2018, 2019 * Jonathan Schleifer <js@heap.zone> * * All rights reserved. * * This file is part of ObjFW. It may be distributed under the terms of the * Q Public License 1.0, which can be found in the file LICENSE.QPL included in * the packaging of this file. * * Alternatively, it may be distributed under the terms of the GNU General * Public License, either version 2 or 3, which can be found in the file * LICENSE.GPLv2 or LICENSE.GPLv3 respectively included in the packaging of this * file. */ #include "config.h" #include <stdio.h> #include <stdlib.h> #include <string.h> #include <limits.h> #import "ObjFW_RT.h" #import "private.h" static struct objc_hashtable *classes = NULL; static unsigned classesCount = 0; static Class *loadQueue = NULL; static size_t loadQueueCount = 0; static struct objc_dtable *emptyDTable = NULL; static unsigned lookupsUntilFastPath = 128; static struct objc_sparsearray *fastPath = NULL; static void registerClass(struct objc_abi_class *cls) { if (classes == NULL) classes = objc_hashtable_new( objc_hash_string, objc_equal_string, 2); objc_hashtable_set(classes, cls->name, cls); if (emptyDTable == NULL) emptyDTable = objc_dtable_new(); cls->DTable = emptyDTable; cls->metaclass->DTable = emptyDTable; if (strcmp(cls->name, "Protocol") != 0) classesCount++; } bool class_registerAlias_np(Class cls, const char *name) { objc_global_mutex_lock(); if (classes == NULL) { objc_global_mutex_unlock(); return NO; } objc_hashtable_set(classes, name, (Class)((uintptr_t)cls | 1)); objc_global_mutex_unlock(); return YES; } static void registerSelectors(struct objc_abi_class *cls) { struct objc_abi_method_list *methodList; for (methodList = cls->methodList; methodList != NULL; methodList = methodList->next) for (unsigned int i = 0; i < methodList->count; i++) objc_register_selector((struct objc_abi_selector *) &methodList->methods[i]); } Class objc_classname_to_class(const char *name, bool cache) { Class cls; if (classes == NULL) return Nil; /* * Fast path * * Instead of looking up the string in a dictionary, which needs * locking, we use a sparse array to look up the pointer. If * objc_classname_to_class() gets called a lot, it is most likely that * the GCC ABI is used, which always calls into objc_lookup_class(), or * that it is used in a loop by the user. In both cases, it is very * likely that the same string pointer is passed again and again. * * This is not used before objc_classname_to_class() has been called a * certain amount of times, so that no memory is wasted if it is only * used rarely, for example if the ObjFW ABI is used and the user does * not call it in a loop. * * Runtime internal usage does not use the fast path and does not count * as a call into objc_classname_to_class(). The reason for this is * that if the runtime calls into objc_classname_to_class(), it already * has the lock and thus the performance gain would be small, but it * would waste memory. */ if (cache && fastPath != NULL) { cls = objc_sparsearray_get(fastPath, (uintptr_t)name); if (cls != Nil) return cls; } objc_global_mutex_lock(); cls = (Class)((uintptr_t)objc_hashtable_get(classes, name) & ~1); if (cache && fastPath == NULL && --lookupsUntilFastPath == 0) fastPath = objc_sparsearray_new(sizeof(uintptr_t)); if (cache && fastPath != NULL) objc_sparsearray_set(fastPath, (uintptr_t)name, cls); objc_global_mutex_unlock(); return cls; } static void callMethod(Class cls, const char *method) { SEL selector = sel_registerName(method); for (struct objc_method_list *methodList = cls->isa->methodList; methodList != NULL; methodList = methodList->next) for (unsigned int i = 0; i < methodList->count; i++) if (sel_isEqual((SEL)&methodList->methods[i].selector, selector)) ((void (*)(id, SEL))methodList->methods[i] .implementation)(cls, selector); } static bool hasLoad(Class cls) { SEL selector = sel_registerName("load"); for (struct objc_method_list *methodList = cls->isa->methodList; methodList != NULL; methodList = methodList->next) for (size_t i = 0; i < methodList->count; i++) if (sel_isEqual((SEL)&methodList->methods[i].selector, selector)) return true; return false; } static void callLoad(Class cls) { if (cls->info & OBJC_CLASS_INFO_LOADED) return; if (cls->superclass != Nil) callLoad(cls->superclass); callMethod(cls, "load"); cls->info |= OBJC_CLASS_INFO_LOADED; } void objc_update_dtable(Class cls) { struct objc_category **categories; if (!(cls->info & OBJC_CLASS_INFO_DTABLE)) return; if (cls->DTable == emptyDTable) cls->DTable = objc_dtable_new(); if (cls->superclass != Nil) objc_dtable_copy(cls->DTable, cls->superclass->DTable); for (struct objc_method_list *methodList = cls->methodList; methodList != NULL; methodList = methodList->next) for (unsigned int i = 0; i < methodList->count; i++) objc_dtable_set(cls->DTable, (uint32_t)methodList->methods[i].selector.UID, methodList->methods[i].implementation); if ((categories = objc_categories_for_class(cls)) != NULL) { for (unsigned int i = 0; categories[i] != NULL; i++) { struct objc_method_list *methodList = (cls->info & OBJC_CLASS_INFO_CLASS ? categories[i]->instanceMethods : categories[i]->classMethods); for (; methodList != NULL; methodList = methodList->next) for (unsigned int j = 0; j < methodList->count; j++) objc_dtable_set(cls->DTable, (uint32_t) methodList->methods[j].selector.UID, methodList->methods[j] .implementation); } } if (cls->subclassList != NULL) for (Class *iter = cls->subclassList; *iter != NULL; iter++) objc_update_dtable(*iter); } static void addSubclass(Class cls) { size_t i; if (cls->superclass->subclassList == NULL) { if ((cls->superclass->subclassList = malloc(2 * sizeof(Class))) == NULL) OBJC_ERROR("Not enough memory for subclass list of " "class %s!", cls->superclass->name); cls->superclass->subclassList[0] = cls; cls->superclass->subclassList[1] = Nil; return; } for (i = 0; cls->superclass->subclassList[i] != Nil; i++); cls->superclass->subclassList = realloc(cls->superclass->subclassList, (i + 2) * sizeof(Class)); if (cls->superclass->subclassList == NULL) OBJC_ERROR("Not enough memory for subclass list of class %s\n", cls->superclass->name); cls->superclass->subclassList[i] = cls; cls->superclass->subclassList[i + 1] = Nil; } static void updateIVarOffsets(Class cls) { if (!(cls->info & OBJC_CLASS_INFO_NEW_ABI)) return; if (cls->instanceSize > 0) return; cls->instanceSize = -cls->instanceSize; if (cls->superclass != Nil) { cls->instanceSize += cls->superclass->instanceSize; if (cls->iVars != NULL) { for (unsigned int i = 0; i < cls->iVars->count; i++) { cls->iVars->iVars[i].offset += cls->superclass->instanceSize; *cls->iVarOffsets[i] = cls->iVars->iVars[i].offset; } } } else for (unsigned int i = 0; i < cls->iVars->count; i++) *cls->iVarOffsets[i] = cls->iVars->iVars[i].offset; } static void setupClass(Class cls) { const char *superclass; if (cls->info & OBJC_CLASS_INFO_SETUP) return; if ((superclass = ((struct objc_abi_class *)cls)->superclass) != NULL) { Class super = objc_classname_to_class(superclass, false); if (super == Nil) return; setupClass(super); if (!(super->info & OBJC_CLASS_INFO_SETUP)) return; cls->superclass = super; cls->isa->superclass = super->isa; addSubclass(cls); addSubclass(cls->isa); } else cls->isa->superclass = cls; updateIVarOffsets(cls); cls->info |= OBJC_CLASS_INFO_SETUP; cls->isa->info |= OBJC_CLASS_INFO_SETUP; } static void initializeClass(Class cls) { if (cls->info & OBJC_CLASS_INFO_INITIALIZED) return; if (cls->superclass) initializeClass(cls->superclass); cls->info |= OBJC_CLASS_INFO_DTABLE; cls->isa->info |= OBJC_CLASS_INFO_DTABLE; objc_update_dtable(cls); objc_update_dtable(cls->isa); /* * Set it first to prevent calling it recursively due to message sends * in the initialize method */ cls->info |= OBJC_CLASS_INFO_INITIALIZED; cls->isa->info |= OBJC_CLASS_INFO_INITIALIZED; callMethod(cls, "initialize"); } void objc_initialize_class(Class cls) { if (cls->info & OBJC_CLASS_INFO_INITIALIZED) return; objc_global_mutex_lock(); /* * It's possible that two threads try to initialize a class at the same * time. Make sure that the thread which held the lock did not already * initialize it. */ if (cls->info & OBJC_CLASS_INFO_INITIALIZED) { objc_global_mutex_unlock(); return; } setupClass(cls); if (!(cls->info & OBJC_CLASS_INFO_SETUP)) { objc_global_mutex_unlock(); return; } initializeClass(cls); objc_global_mutex_unlock(); } static void processLoadQueue() { for (size_t i = 0; i < loadQueueCount; i++) { setupClass(loadQueue[i]); if (loadQueue[i]->info & OBJC_CLASS_INFO_SETUP) { callLoad(loadQueue[i]); loadQueueCount--; if (loadQueueCount == 0) { free(loadQueue); loadQueue = NULL; continue; } loadQueue[i] = loadQueue[loadQueueCount]; loadQueue = realloc(loadQueue, sizeof(Class) * loadQueueCount); if (loadQueue == NULL) OBJC_ERROR("Not enough memory for load queue!"); } } } void objc_register_all_classes(struct objc_abi_symtab *symtab) { for (uint16_t i = 0; i < symtab->classDefsCount; i++) { struct objc_abi_class *cls = (struct objc_abi_class *)symtab->defs[i]; registerClass(cls); registerSelectors(cls); registerSelectors(cls->metaclass); } for (uint16_t i = 0; i < symtab->classDefsCount; i++) { Class cls = (Class)symtab->defs[i]; if (hasLoad(cls)) { setupClass(cls); if (cls->info & OBJC_CLASS_INFO_SETUP) callLoad(cls); else { loadQueue = realloc(loadQueue, sizeof(Class) * (loadQueueCount + 1)); if (loadQueue == NULL) OBJC_ERROR("Not enough memory for load " "queue!"); loadQueue[loadQueueCount++] = cls; } } else cls->info |= OBJC_CLASS_INFO_LOADED; } processLoadQueue(); } Class objc_allocateClassPair(Class superclass, const char *name, size_t extraBytes) { struct objc_class *cls, *metaclass; Class iter, rootclass = Nil; if (extraBytes > LONG_MAX) OBJC_ERROR("extra_bytes out of range!") if ((cls = calloc(1, sizeof(*cls))) == NULL || (metaclass = calloc(1, sizeof(*cls))) == NULL) OBJC_ERROR("Not enough memory to allocate class pair for class " "%s!", name) cls->isa = metaclass; cls->superclass = superclass; cls->name = name; cls->info = OBJC_CLASS_INFO_CLASS; cls->instanceSize = (superclass != Nil ? superclass->instanceSize : 0) + (long)extraBytes; for (iter = superclass; iter != Nil; iter = iter->superclass) rootclass = iter; metaclass->isa = (rootclass != Nil ? rootclass->isa : cls); metaclass->superclass = (superclass != Nil ? superclass->isa : Nil); metaclass->name = name; metaclass->info = OBJC_CLASS_INFO_CLASS; metaclass->instanceSize = (superclass != Nil ? superclass->isa->instanceSize : 0) + (long)extraBytes; return cls; } void objc_registerClassPair(Class cls) { objc_global_mutex_lock(); registerClass((struct objc_abi_class *)cls); if (cls->superclass != Nil) { addSubclass(cls); addSubclass(cls->isa); } cls->info |= OBJC_CLASS_INFO_SETUP; cls->isa->info |= OBJC_CLASS_INFO_SETUP; if (hasLoad(cls)) callLoad(cls); else cls->info |= OBJC_CLASS_INFO_LOADED; processLoadQueue(); objc_global_mutex_unlock(); } Class objc_lookUpClass(const char *name) { Class cls; if ((cls = objc_classname_to_class(name, true)) == NULL) return Nil; if (cls->info & OBJC_CLASS_INFO_SETUP) return cls; objc_global_mutex_lock(); setupClass(cls); objc_global_mutex_unlock(); if (!(cls->info & OBJC_CLASS_INFO_SETUP)) return Nil; return cls; } Class objc_getClass(const char *name) { return objc_lookUpClass(name); } Class objc_getRequiredClass(const char *name) { Class cls; if ((cls = objc_getClass(name)) == Nil) OBJC_ERROR("Class %s not found!", name); return cls; } Class objc_lookup_class(const char *name) { return objc_getClass(name); } Class objc_get_class(const char *name) { return objc_getRequiredClass(name); } unsigned int objc_getClassList(Class *buffer, unsigned int count) { unsigned int j; objc_global_mutex_lock(); if (buffer == NULL) return classesCount; if (classesCount < count) count = classesCount; j = 0; for (uint32_t i = 0; i < classes->size; i++) { void *cls; if (j >= count) { objc_global_mutex_unlock(); return j; } if (classes->data[i] == NULL) continue; if (strcmp(classes->data[i]->key, "Protocol") == 0) continue; cls = (Class)classes->data[i]->object; if (cls == Nil || (uintptr_t)cls & 1) continue; buffer[j++] = cls; } objc_global_mutex_unlock(); return j; } Class * objc_copyClassList(unsigned int *len) { Class *ret; unsigned int count; objc_global_mutex_lock(); if ((ret = malloc((classesCount + 1) * sizeof(Class))) == NULL) OBJC_ERROR("Failed to allocate memory for class list!"); count = objc_getClassList(ret, classesCount); OF_ENSURE(count == classesCount); ret[count] = Nil; if (len != NULL) *len = count; objc_global_mutex_unlock(); return ret; } bool class_isMetaClass(Class cls) { if (cls == Nil) return false; return (cls->info & OBJC_CLASS_INFO_METACLASS); } const char * class_getName(Class cls) { if (cls == Nil) return ""; return cls->name; } Class class_getSuperclass(Class cls) { if (cls == Nil) return Nil; return cls->superclass; } unsigned long class_getInstanceSize(Class cls) { if (cls == Nil) return 0; return cls->instanceSize; } IMP class_getMethodImplementation(Class cls, SEL selector) { /* * We use a dummy object here so that the normal lookup is used, even * though we don't have an object. Doing so is safe, as objc_msg_lookup * does not access the object, but only its class. * * Just looking it up in the dispatch table could result in returning * NULL instead of the forwarding handler, it would also mean * +[resolveClassMethod:] / +[resolveInstanceMethod:] would not be * called. */ struct { Class isa; } dummy; if (cls == Nil) return NULL; dummy.isa = cls; return objc_msg_lookup((id)&dummy, selector); } IMP class_getMethodImplementation_stret(Class cls, SEL selector) { /* * Same as above, but use objc_msg_lookup_stret instead, so that the * correct forwarding handler is returned. */ struct { Class isa; } dummy; if (cls == Nil) return NULL; dummy.isa = cls; return objc_msg_lookup_stret((id)&dummy, selector); } static struct objc_method * getMethod(Class cls, SEL selector) { struct objc_category **categories; if ((categories = objc_categories_for_class(cls)) != NULL) { for (; *categories != NULL; categories++) { struct objc_method_list *methodList = (cls->info & OBJC_CLASS_INFO_METACLASS ? (*categories)->classMethods : (*categories)->instanceMethods); for (; methodList != NULL; methodList = methodList->next) for (unsigned int i = 0; i < methodList->count; i++) if (sel_isEqual((SEL) &methodList->methods[i].selector, selector)) return &methodList->methods[i]; } } for (struct objc_method_list *methodList = cls->methodList; methodList != NULL; methodList = methodList->next) for (unsigned int i = 0; i < methodList->count; i++) if (sel_isEqual((SEL)&methodList->methods[i].selector, selector)) return &methodList->methods[i]; return NULL; } static void addMethod(Class cls, SEL selector, IMP implementation, const char *typeEncoding) { struct objc_method_list *methodList; /* FIXME: We need a way to free this at objc_exit() */ if ((methodList = malloc(sizeof(struct objc_method_list))) == NULL) OBJC_ERROR("Not enough memory to replace method!"); methodList->next = cls->methodList; methodList->count = 1; methodList->methods[0].selector.UID = selector->UID; methodList->methods[0].selector.typeEncoding = typeEncoding; methodList->methods[0].implementation = implementation; cls->methodList = methodList; objc_update_dtable(cls); } const char * class_getMethodTypeEncoding(Class cls, SEL selector) { struct objc_method *method; if (cls == Nil) return NULL; objc_global_mutex_lock(); if ((method = getMethod(cls, selector)) != NULL) { const char *ret = method->selector.typeEncoding; objc_global_mutex_unlock(); return ret; } objc_global_mutex_unlock(); if (cls->superclass != Nil) return class_getMethodTypeEncoding(cls->superclass, selector); return NULL; } bool class_addMethod(Class cls, SEL selector, IMP implementation, const char *typeEncoding) { bool ret; objc_global_mutex_lock(); if (getMethod(cls, selector) == NULL) { addMethod(cls, selector, implementation, typeEncoding); ret = true; } else ret = false; objc_global_mutex_unlock(); return ret; } IMP class_replaceMethod(Class cls, SEL selector, IMP implementation, const char *typeEncoding) { struct objc_method *method; IMP oldImplementation; objc_global_mutex_lock(); if ((method = getMethod(cls, selector)) != NULL) { oldImplementation = method->implementation; method->implementation = implementation; objc_update_dtable(cls); } else { oldImplementation = NULL; addMethod(cls, selector, implementation, typeEncoding); } objc_global_mutex_unlock(); return oldImplementation; } Class object_getClass(id object_) { struct objc_object *object; if (object_ == nil) return Nil; object = (struct objc_object *)object_; return object->isa; } Class object_setClass(id object_, Class cls) { struct objc_object *object; Class old; if (object_ == nil) return Nil; object = (struct objc_object *)object_; old = object->isa; object->isa = cls; return old; } const char * object_getClassName(id obj) { return class_getName(object_getClass(obj)); } static void unregisterClass(Class rcls) { struct objc_abi_class *cls = (struct objc_abi_class *)rcls; if ((rcls->info & OBJC_CLASS_INFO_SETUP) && rcls->superclass != Nil && rcls->superclass->subclassList != NULL) { size_t i = SIZE_MAX, count = 0; Class *tmp; for (tmp = rcls->superclass->subclassList; *tmp != Nil; tmp++) { if (*tmp == rcls) i = count; count++; } if (count > 0 && i < SIZE_MAX) { tmp = rcls->superclass->subclassList; tmp[i] = tmp[count - 1]; tmp[count - 1] = NULL; if ((tmp = realloc(rcls->superclass->subclassList, count * sizeof(Class))) != NULL) rcls->superclass->subclassList = tmp; } } if (rcls->subclassList != NULL) { free(rcls->subclassList); rcls->subclassList = NULL; } if (rcls->DTable != NULL && rcls->DTable != emptyDTable) objc_dtable_free(rcls->DTable); rcls->DTable = NULL; if ((rcls->info & OBJC_CLASS_INFO_SETUP) && rcls->superclass != Nil) cls->superclass = rcls->superclass->name; rcls->info &= ~OBJC_CLASS_INFO_SETUP; } void objc_unregister_class(Class cls) { while (cls->subclassList != NULL && cls->subclassList[0] != Nil) objc_unregister_class(cls->subclassList[0]); if (cls->info & OBJC_CLASS_INFO_LOADED) callMethod(cls, "unload"); objc_hashtable_delete(classes, cls->name); if (strcmp(class_getName(cls), "Protocol") != 0) classesCount--; unregisterClass(cls); unregisterClass(cls->isa); } void objc_unregister_all_classes(void) { if (classes == NULL) return; for (uint32_t i = 0; i < classes->size; i++) { if (classes->data[i] != NULL && classes->data[i] != &objc_deleted_bucket) { void *cls = (Class)classes->data[i]->object; if (cls == Nil || (uintptr_t)cls & 1) continue; objc_unregister_class(cls); /* * The table might have been resized, so go back to the * start again. * * Due to the i++ in the for loop, we need to set it to * UINT32_MAX so that it will get increased at the end * of the loop and thus become 0. */ i = UINT32_MAX; } } OF_ENSURE(classesCount == 0); if (emptyDTable != NULL) { objc_dtable_free(emptyDTable); emptyDTable = NULL; } objc_sparsearray_free(fastPath); fastPath = NULL; objc_hashtable_free(classes); classes = NULL; }