/*
* Copyright (c) 2008 - 2010
* Jonathan Schleifer <js@webkeks.org>
*
* All rights reserved.
*
* This file is part of ObjFW. It may be distributed under the terms of the
* Q Public License 1.0, which can be found in the file LICENSE included in
* the packaging of this file.
*/
#include "config.h"
#include <string.h>
#import "OFHashes.h"
#import "OFAutoreleasePool.h"
#import "OFExceptions.h"
#import "macros.h"
int _OFHashing_reference;
/*
* MD5
*/
/* The four MD5 core functions - F1 is optimized somewhat */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
static inline void
md5_transform(uint32_t buf[4], const uint32_t in[16])
{
register uint32_t a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xD76AA478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xE8C7B756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070DB, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xC1BDCEEE, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xF57C0FAF, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787C62A, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xA8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xFD469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098D8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8B44F7AF, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xFFFF5BB1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895CD7Be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6B901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xFD987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xA679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49B40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xF61E2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xC040B340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265E5A51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xE9B6C7AA, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xD62F105D, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xD8A1E681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xE7D3FBC8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21E1CDE6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xC33707D6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xF4D50D87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455A14ED, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xA9E3E905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xFCEFA3F8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676F02D9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8D2A4C8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xFFFA3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771F681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6D9D6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xFDE5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xA4BEEA44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4BDECFA9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xF6BB4B60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xBEBFBC70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289B7EC6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xEAA127FA, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xD4EF3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881D05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xD9D4D039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xE6DB99E5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1FA27CF8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xC4AC5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xF4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432AFF97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xAB9423A7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xFC93A039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655B59C3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8F0CCC92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xFFEFF47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845DD1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6FA87E4F, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xFE2CE6E0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xA3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4E0811A1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xF7537E82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xBD3AF235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2AD7D2BB, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xEB86D391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
@implementation OFMD5Hash
+ md5Hash
{
return [[[self alloc] init] autorelease];
}
- init
{
self = [super init];
buf[0] = 0x67452301;
buf[1] = 0xEFCDAB89;
buf[2] = 0x98BADCFE;
buf[3] = 0x10325476;
return self;
}
- updateWithBuffer: (const char*)buffer
ofSize: (size_t)size
{
uint32_t t;
if (size == 0)
return self;
if (calculated)
@throw [OFHashAlreadyCalculatedException newWithClass: isa];
/* Update bitcount */
t = bits[0];
if ((bits[0] = t + ((uint32_t)size << 3)) < t)
/* Carry from low to high */
bits[1]++;
bits[1] += size >> 29;
/* Bytes already in shsInfo->data */
t = (t >> 3) & 0x3F;
/* Handle any leading odd-sized chunks */
if (t) {
uint8_t *p = in + t;
t = 64 - t;
if (size < t) {
memcpy(p, buffer, size);
return self;
}
memcpy(p, buffer, t);
OF_BSWAP32_V_IF_BE((uint32_t*)in, 16);
md5_transform(buf, (uint32_t*)in);
buffer += t;
size -= t;
}
/* Process data in 64-byte chunks */
while (size >= 64) {
memcpy(in, buffer, 64);
OF_BSWAP32_V_IF_BE((uint32_t*)in, 16);
md5_transform(buf, (uint32_t*)in);
buffer += 64;
size -= 64;
}
/* Handle any remaining bytes of data. */
memcpy(in, buffer, size);
return self;
}
- (uint8_t*)digest
{
uint8_t *p;
size_t count;
if (calculated)
return (uint8_t*)buf;
/* Compute number of bytes mod 64 */
count = (bits[0] >> 3) & 0x3F;
/*
* Set the first char of padding to 0x80. This is safe since there is
* always at least one byte free
*/
p = in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
OF_BSWAP32_V_IF_BE((uint32_t*)in, 16);
md5_transform(buf, (uint32_t*)in);
/* Now fill the next block with 56 bytes */
memset(in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
OF_BSWAP32_V_IF_BE((uint32_t*)in, 14);
/* Append length in bits and transform */
((uint32_t*)in)[14] = bits[0];
((uint32_t*)in)[15] = bits[1];
md5_transform(buf, (uint32_t*)in);
OF_BSWAP32_V_IF_BE(buf, 4);
calculated = YES;
return (uint8_t*)buf;
}
@end
#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP
/*
* SHA1
*/
/* blk0() and blk() perform the initial expand. */
#ifndef OF_BIG_ENDIAN
#define blk0(i) \
(block->l[i] = (OF_ROL(block->l[i], 24) & 0xFF00FF00) | \
(OF_ROL(block->l[i], 8) & 0x00FF00FF))
#else
#define blk0(i) block->l[i]
#endif
#define blk(i) \
(block->l[i & 15] = OF_ROL(block->l[(i + 13) & 15] ^ \
block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ \
block->l[i & 15], 1))
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + OF_ROL(v, 5); \
w = OF_ROL(w, 30);
#define R1(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + OF_ROL(v, 5); \
w = OF_ROL(w, 30);
#define R2(v, w, x, y, z, i) \
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + OF_ROL(v, 5); \
w = OF_ROL(w, 30);
#define R3(v, w, x, y, z, i) \
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + OF_ROL(v, 5); \
w = OF_ROL(w, 30);
#define R4(v, w, x, y, z, i) \
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + OF_ROL(v, 5); \
w = OF_ROL(w, 30);
/// \cond internal
typedef union {
char c[64];
uint32_t l[16];
} sha1_c64l16_t;
/// \endcond
static inline void
sha1_transform(uint32_t state[5], const char buffer[64])
{
uint32_t a, b, c, d, e;
char workspace[64];
sha1_c64l16_t *block;
block = (sha1_c64l16_t*)workspace;
memcpy(block, buffer, 64);
/* Copy state[] to working vars */
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
static inline void
sha1_update(uint32_t *state, uint64_t *count, char *buffer,
const char *buf, size_t size)
{
size_t i, j;
j = (size_t)((*count >> 3) & 63);
*count += (size << 3);
if ((j + size) > 63) {
memcpy(&buffer[j], buf, (i = 64 - j));
sha1_transform(state, buffer);
for (; i + 63 < size; i += 64)
sha1_transform(state, &buf[i]);
j = 0;
} else
i = 0;
memcpy(&buffer[j], &buf[i], size - i);
}
@implementation OFSHA1Hash
+ sha1Hash
{
return [[[self alloc] init] autorelease];
}
- init
{
self = [super init];
state[0] = 0x67452301;
state[1] = 0xEFCDAB89;
state[2] = 0x98BADCFE;
state[3] = 0x10325476;
state[4] = 0xC3D2E1F0;
return self;
}
- updateWithBuffer: (const char*)buf
ofSize: (size_t)size
{
if (size == 0)
return self;
if (calculated)
@throw [OFHashAlreadyCalculatedException newWithClass: isa];
sha1_update(state, &count, buffer, buf, size);
return self;
}
- (uint8_t*)digest
{
size_t i;
char finalcount[8];
if (calculated)
return digest;
for (i = 0; i < 8; i++)
/* Endian independent */
finalcount[i] = (char)((count >> ((7 - (i & 7)) * 8)) & 255);
sha1_update(state, &count, buffer, "\200", 1);
while ((count & 504) != 448)
sha1_update(state, &count, buffer, "\0", 1);
/* Should cause a sha1_transform() */
sha1_update(state, &count, buffer, finalcount, 8);
for (i = 0; i < OF_SHA1_DIGEST_SIZE; i++)
digest[i] = (char)((state[i >> 2] >>
((3 - (i & 3)) * 8)) & 255);
calculated = YES;
return digest;
}
@end
#undef blk0
#undef blk
#undef R0
#undef R1
#undef R2
#undef R3
#undef R4
@implementation OFString (OFHashing)
- (OFString*)md5Hash
{
OFAutoreleasePool *pool = [[OFAutoreleasePool alloc] init];
OFMD5Hash *hash = [OFMD5Hash md5Hash];
uint8_t *digest;
char ret_c[32];
size_t i;
[hash updateWithBuffer: string
ofSize: length];
digest = [hash digest];
for (i = 0; i < 16; i++) {
uint8_t high, low;
high = digest[i] >> 4;
low = digest[i] & 0x0F;
ret_c[i * 2] = (high > 9 ? high - 10 + 'a' : high + '0');
ret_c[i * 2 + 1] = (low > 9 ? low - 10 + 'a' : low + '0');
}
[pool release];
return [OFString stringWithCString: ret_c
length: 32];
}
- (OFString*)sha1Hash
{
OFAutoreleasePool *pool = [[OFAutoreleasePool alloc] init];
OFMD5Hash *hash = [OFSHA1Hash sha1Hash];
uint8_t *digest;
char ret_c[40];
size_t i;
[hash updateWithBuffer: string
ofSize: length];
digest = [hash digest];
for (i = 0; i < 20; i++) {
uint8_t high, low;
high = digest[i] >> 4;
low = digest[i] & 0x0F;
ret_c[i * 2] = (high > 9 ? high - 10 + 'a' : high + '0');
ret_c[i * 2 + 1] = (low > 9 ? low - 10 + 'a' : low + '0');
}
[pool release];
return [OFString stringWithCString: ret_c
length: 40];
}
@end